The compound you've provided is **[4-(2,3-dimethylphenyl)-1-piperazinyl]-[5-[(4-methoxyphenyl)sulfonylmethyl]-2-furanyl]methanone**. It's a complex organic molecule with a rather long and descriptive chemical name.
To understand its significance, let's break down its structure and potential applications:
**Structure:**
* **Piperazine Ring:** This six-membered ring with two nitrogen atoms is a common scaffold in medicinal chemistry. It can interact with biological targets, making it a good starting point for drug development.
* **2,3-dimethylphenyl:** This is a substituted benzene ring, providing structural diversity and potentially influencing the compound's properties.
* **Furan Ring:** This five-membered ring containing oxygen is known to exhibit diverse biological activities.
* **Sulfonylmethyl Group:** This group containing sulfur and oxygen can contribute to the compound's binding affinity to specific targets.
* **Methoxyphenyl Group:** This aromatic group, including a methoxy (OCH3) substituent, can further enhance binding interactions.
**Potential Importance in Research:**
The specific importance of this compound depends on its biological activity, which is unknown based solely on the chemical name. However, its structure suggests several possibilities:
* **Drug Candidate:** The presence of various pharmacophores (functional groups with specific biological effects) and the piperazine ring, commonly found in drugs, makes this compound a potential candidate for pharmaceutical research. It could be evaluated for its activity against various diseases.
* **Probing Biological Targets:** This compound could be used as a probe to study the interactions of different functional groups with specific biological targets. Understanding these interactions is crucial for designing new drugs.
* **Materials Science:** The presence of diverse functionalities might make this compound interesting for materials science applications. For example, it could be used in polymer synthesis or as a component in organic electronics.
**To definitively determine its importance in research, one needs to conduct further investigations:**
* **Synthesize the compound:** This is the first step to investigate its properties.
* **Biological activity studies:** Testing the compound against different biological targets and disease models can reveal its therapeutic potential.
* **Structure-activity relationship (SAR) studies:** Varying the structure of the compound systematically can help identify the key functional groups responsible for its activity.
In summary, [4-(2,3-dimethylphenyl)-1-piperazinyl]-[5-[(4-methoxyphenyl)sulfonylmethyl]-2-furanyl]methanone is a complex organic molecule with the potential for diverse applications in research. Its actual importance will depend on the results of further investigations.
ID Source | ID |
---|---|
PubMed CID | 4092553 |
CHEMBL ID | 1529669 |
CHEBI ID | 123370 |
Synonym |
---|
MLS000120226 , |
smr000097143 |
MLS001073750 |
MLS000878723 |
CHEBI:123370 |
[4-(2,3-dimethylphenyl)piperazin-1-yl]-[5-[(4-methoxyphenyl)sulfonylmethyl]furan-2-yl]methanone |
AKOS002119851 |
HMS2258D07 |
[4-(2,3-dimethylphenyl)-1-piperazinyl]-[5-[(4-methoxyphenyl)sulfonylmethyl]-2-furanyl]methanone |
[4-(2,3-dimethylphenyl)piperazino]-[5-[(4-methoxyphenyl)sulfonylmethyl]-2-furyl]methanone |
cid_4092553 |
bdbm37174 |
CHEMBL1529669 |
1-(2,3-dimethylphenyl)-4-{5-[(4-methoxybenzenesulfonyl)methyl]furan-2-carbonyl}piperazine |
Q27213078 |
Class | Description |
---|---|
piperazines | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 16.5978 | 0.0447 | 17.8581 | 100.0000 | AID485294; AID485341 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 56.2341 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
Chain A, Cruzipain | Trypanosoma cruzi | Potency | 25.1189 | 0.0020 | 14.6779 | 39.8107 | AID1476 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 7.9433 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 16.3601 | 0.0041 | 10.8903 | 31.5287 | AID504466; AID504467 |
USP1 protein, partial | Homo sapiens (human) | Potency | 0.7079 | 0.0316 | 37.5844 | 354.8130 | AID743255 |
TDP1 protein | Homo sapiens (human) | Potency | 22.7265 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 25.1189 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
thioredoxin glutathione reductase | Schistosoma mansoni | Potency | 50.1187 | 0.1000 | 22.9075 | 100.0000 | AID485364 |
Smad3 | Homo sapiens (human) | Potency | 17.7828 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
thyroid stimulating hormone receptor | Homo sapiens (human) | Potency | 15.8489 | 0.0013 | 18.0743 | 39.8107 | AID926 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 29.0929 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 14.1254 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
importin subunit beta-1 isoform 1 | Homo sapiens (human) | Potency | 2.0596 | 5.8048 | 36.1306 | 65.1308 | AID540253 |
mitogen-activated protein kinase 1 | Homo sapiens (human) | Potency | 39.8107 | 0.0398 | 16.7842 | 39.8107 | AID995 |
snurportin-1 | Homo sapiens (human) | Potency | 2.0596 | 5.8048 | 36.1306 | 65.1308 | AID540253 |
GTP-binding nuclear protein Ran isoform 1 | Homo sapiens (human) | Potency | 2.0596 | 5.8048 | 16.9962 | 25.9290 | AID540253 |
urokinase-type plasminogen activator precursor | Mus musculus (house mouse) | Potency | 22.3872 | 0.1585 | 5.2879 | 12.5893 | AID540303 |
plasminogen precursor | Mus musculus (house mouse) | Potency | 22.3872 | 0.1585 | 5.2879 | 12.5893 | AID540303 |
urokinase plasminogen activator surface receptor precursor | Mus musculus (house mouse) | Potency | 22.3872 | 0.1585 | 5.2879 | 12.5893 | AID540303 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 35.4813 | 0.0079 | 8.2332 | 1,122.0200 | AID2551 |
lethal(3)malignant brain tumor-like protein 1 isoform I | Homo sapiens (human) | Potency | 31.6228 | 0.0752 | 15.2253 | 39.8107 | AID485360 |
geminin | Homo sapiens (human) | Potency | 11.5946 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 25.1189 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 3.5481 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
lethal factor (plasmid) | Bacillus anthracis str. A2012 | Potency | 31.6228 | 0.0200 | 10.7869 | 31.6228 | AID912 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 31.6228 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
Inositol monophosphatase 1 | Rattus norvegicus (Norway rat) | Potency | 10.0000 | 1.0000 | 10.4756 | 28.1838 | AID1457 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 25.1189 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
RNA polymerase II cis-regulatory region sequence-specific DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
double-stranded DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
RNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
mRNA 3'-UTR binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
lipid binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
identical protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
pre-mRNA intronic binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
molecular condensate scaffold activity | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |